OBJECT ORIENTED
PROGRAMMING USING C++

Inheritance Concept

class Rectangle{

Polygon private:

float *xCoord, *yCoord,;

public:
void set(float *x, float *y, int nV);

Int numVertices;

float area();

¢
class Polygon{ class Triangle{
private: private:
Int numVertices; int num\ertices;
float *xCoord, *yCoord; float *xCoord, *yCoord;
public: public:
void set(float *x, float *y, int nV); void set(float *x, float *y, int nV);
1 float area();

¥

Inheritance Concept

Polygon

/

class Rectangle : public Polygon{
public:
float area();

¥

Rectangle M

class Polygon{
protected:
Int num\ertices;
float *xCoord, float *yCoord,;
public:
void set(float *x, float *y, int nV);

¥

class Rectangle{
protected:
Int num\ertices;
float *xCoord, float *yCoord,;
public:
void set(float *x, float *y, int nV);
float area();

Inheritance Concept

class Polygon{
PO Iygon protected:

int num\ertices;

float *xCoord, float *yCoord,;
public:
void set(float *x, float *y, int nV);
S m '

class Triangle{

protected:
class Triangle : public Polygon{ int numVertices;
public: float *xCoord, float *yCoord;
float area(); = public:
Y void set(float *x, float *y, int nV);

float area();

Inheritance Concept

Point

/ \

Circle 3D-Point

X

y
r

class Circle : public Point{

private:

double r;

X

X

y
4

class Point{
protected:
Int X, y;
public:
void set (int a, int b);

class 3D-Point: public Point{
private:
Int z;

Inheritance Concept

e Augmenting the original class

Polygon

P

e Specializing the original class

[ComplexNumber J real
P w, Imag

[RealNumber J [ImaginaryNumberJ imag

real

Why Inheritance ?

Inheritance Is a mechanism for
e building class types from existing class types

o defining new class types to be a
—specialization
—augmentation

of existing types

Define a Class Hierarchy

e Syntax:

class DerivedClassName : access-level BaseClassName

where
— access-level specifies the type of derivation
e private by default, or
 public
* Any class can serve as a base class
— Thus a derived class can also be a base class

Class Derivation

Point class Point{
‘ protected:
Int X, y;
3D-Point oublic:
Y void set (int , int b);
Sphere 4
class 3D-Point : public Point{ class Sphere : public 3D-Point{
private: private:
double z; double r;
¥ }

Point Is the base class of 3D-Point, while 3D-Point is the base class of Sphege

What to inherit?

 |n principle, every member of a base class Is
Inherited by a derived class

— Just with different access permission

10

Access Control Over the Members

e Two levels of access control

base class/ superclass/ over class members
parent class _ class definition
£ — Inheritance type
S
% class Point{
= protected: int X, y;
= public: void set(int a, int b);
derived class/ subclass/ s
child class class Circle : public Point{

Access Rights of Derived Classes

Type of Inheritance

— s private protected public
=3 | private - - -

% O | protected private protected | protected
3 | public private protected public

e The type of inheritance defines the access level for the
members of derived class that are inherited from the base

class

12

Class Derivation

class mother{
protected: int mProc;
public: int mPubl;
private: int mPriv;
b
private/protected/public
class daughter : --------- mother{
private: double dPriv;
public: void dFoo ();

¥

void daughter :: dFoo (){
mPriv = 10; /lerror
mProc = 20;

};

class grandDaughter : public daughter {
private: double gPriv;
public: void gFoo ();

¢

Int main() {
[*...*%/

13

What to inherit?

 |n principle, every member of a base class Is
Inherited by a derived class
— Just with different access permission

* However, there are exceptions for
— constructor and destructor
— operator=() member
— friends

Since all these functions are class-specific

14

Constructor Rules for Derived Classes

The default constructor and the destructor of the
base class are always called when a new object
of a derived class Is created or destroyed.

class A { class B : public A
public: {
A() public:
{cout<< “A:default”<<endl;} B (int a)
A (int a) {cout<<*B”<<endl;}
{cout<<*A:parameter”<<endl;} }
g

output: - A-default
B test(1); B

15

Constructor Rules for Derived Classes

You can also specify an constructor of the
base class other than the default constructor

DerivedClassCon (derivedClass args) : BaseClassCon (baseClass
args)
{ DerivedClass constructor body }

class A { class C : public A {
public: public:
A() C (inta) : A(a)
{cout<< “A:default”<<endl;} {cout<<“C”<<endl;}
A(inta) }:

{cout<<“A:parameter’<<endl;}

Output: A-narameter
C test(1); C

16

Define 1its Own Members

The derived class can also define class Point{
Its own members, in addition to

protected:
the members inherited from the int x, y:
base class _
public:
Point X void set(int a, int b);
4 b
VA _
y | Circle class Circle{
r protected:
int x, y;
class Circle : public Point{ orivate:
private: double r;
doubler; public:
public: void set(int a, int b);
void set_r(double c); void set_r(double c);

Even more ...

o A derived class can override methods defined in its parent

class. With overriding,

— the method in the subclass has the identical signature to the method
In the base class.

— asubclass implements its own version of a base class method.

class A { |
protected: class B : public A {
int x, y; public:
public: void print ()
void print () --------"""7"7""7° {cout<<“From B”<<endl;}
{cout<<*From A”<<endl;} ¢

18

Access a Method

class Point{ _ o
orotected: class Circle : public Point{
intx, y: private: double r;
public: pUb“_C: _ _
void set(int a, int b) void set (int a, int b, double c) {
{x=a; y:l;'} Point :: set(a, b); //same name function call
void oo (): r=c
void print(): L
1. void print(); };
Circle C;
Point A; C.set(10,10,100); // from class Circle
A.set(30,50); // from base class Point C.foo (); // from base class Point

A.print(); // from base class Point C.print(); // from class Circle

19

Putting Them Together

 Time is the base class

o ExtTime Is the derived class with
public inheritance

e The derived class can

— Inherit all members from the base
class, except the constructor

— access all public and protected
members of the base class
— define its private data member

— provide its own constructor
— define its public member functions

— override functions inherited from
the base class

20

class T ime Specification

/[SPECIFICATION FILE
class Time{
public :

void Set(inth,intm,ints);
void Increment () ;
void Write () const;

(time.h)

Time (intinitH, int initM, int initS) ; // constructor

Time ();
protected :

Int hrs ;

Int mins ;

Int SEecs ;

};

/I default constructor

Class Interface Diagram

Time class

Protected data:

hrs -

e [
=

22

Derived Class EXtTime

Il SPECIFICATION FILE (exttime.h)

#include “time.h”
enum ZoneType {EST, CST, MST, PST, EDT, CDT, MDT, PDT };

class ExtTime : public Time
I/l Time Is the base class and use public inheritance

.
public :
void Set (int h, int m, ints, ZoneType timeZone) ;
void Write () const; //overridden
ExtTime (intinitH, int initM, Int initS, ZoneType initZone) ;
ExtTime (); //default constructor
private :

ZoneType zone ; /I added data member

};

Class Interface Diagram
EXtTime class

m Protected data:
s [0

i [
ExtTime
~ [

Private data:

zone L[]

24

Implementation of EXtT Ime

Default Constructor

ExtTime :: ExtTime ()

{
zone = EST ;

}

The default constructor of
base class, Time(), Is
automatically called, when an
ExtTime object is created.

etl

ExtTime etl;

hrs=0
mins =0
secs =0
zone = EST

25

Implementation of EXtT Ime

Another Constructor

ExtTime :: ExtTime (int initH, int initM, Int InitS, ZoneType initZone)
: Time (initH, initM, initS)
/[constructor initializer

{ zone = initZone ;
}
ExtTime *et2 = 5000
new ExtTime(8,30,0,EST);
hrs =8
et2 5000 mins = 30
5000 secs =0
zone = EST 26

Implementation of EXtT Ime

void ExtTime :: Set (int h, int m, int s, ZoneType timeZone)
{

Time :: Set (hours, minutes, seconds); // same name function call
zone =timeZone ;

void ExtTime :: Write () const // function overriding

1
string zoneString[8] =

{“EST”, “CST”, MST”, “PST”, “EDT”, “CDT”, “MDT”, “PDT"} ;

Time :: Write () ;
cout <<* ‘<<zoneString[zone]<<end];

}

Working with EXtTIme

#include “exttime.h”

Int main()

{

ExtTime thisTime (8, 35,0, PST) ;
ExtTime thatTime ;

thatTime.Write() ;

thatTime.Set (16, 49, 23, CDT) ;
thatTime.Write() ;

thisTime.Increment () ;
thisTime.Increment () ;
thisTime.Write () ;

/I default constructor called
/[outputs 00:00:00 EST

/[outputs 16:49:23 CDT

/[outputs 08:35:02 PST

£0

Take Home Message

 Inheritance Is a mechanism for defining new
class types to be a specialization or an
augmentation of existing types.

 In principle, every member of a base class Is
Inherited by a derived class with different
access permissions, except for the constructors

29

